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THE CONTINUOUSLY SUPPORTED RAIL - )
SUBJECTED TO AN AXTAL FORCE AND A MOVING LOAD

by

Arnold D. Kerrz)

SUMMARY
The recent practice of welding railroad rails to each other
suggests that considerable axial compression forces may be induced in
ﬁhe rails because of a raise in temperature, This in turn may reduce
the critical velocity for the track to the range of operational velocities
of modern high speed trains. The purpose of the paper is to demonstrate

that this is indeed a possibility.

INTRODUCTION

The response of a continuously supported beam subjected to moving
loads, was conducted first, in connection with the determination of
stresses in railroad tracks, by S. Timoshenko [1]. The obtained results
indicated that there exist a critical velocity, Vg at which the de-
flections become very large. For assumed values of a rail and the
foundation parameter, Timoshenko found that Vor is about 1200 miles
per hour, about ten times larger than the highest speed of a locomotive
at the time, and concluded that the static equations aré sufficient for
the analysis of stressés»in railroad»rails.

New technological problems, connected with the construction of

high speed rocket test tracks [2], and the use of floating ice plates
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on water as a pavement for moving vehicles [3], accelerated the research
activities in this area, A large number of these results, for beams, as
well as plates, are discussed in a recent survey by A.D. Kerr [4].

The recent interest in high speed trains generated new interest in
the response of continuously supported beams subjected to moving loads.

In order to increase passenger comfort and at the same time decrease the
wear of the rail and base, the individual rails are presently joined by
welding the rail ends to each other [5]. Because of the lack of expansion
joints, falling or rising temperatures may cause considerable axial com-
pression or tension forces in the rail, It is reasonable to expect that
an axial compression force may reduce Vs possibly to the range of
operational velocities of modern high speed trains. The purpose of the
present paper is to demonstrate that this is indeed a possibility.

It appears that there is no analysis which takes into consideration
the effect of axial forces upon Vcr of continuously .supported beams (see
[47). To study this effect, in the following we analyze an infinite beam
which rests on a Winkler foundation, is subjected to a moving concentrated
load P and a constant axial force N, as shown in Fig. 1. The investigation

is based on the differential equation

& 2 i
EI gx¥ + N giﬁ +m §Z§ + kw = P6(x,t) )

where w is the lateral deflection, EI is the flexural rigidity of the
beam, m is the mass of the beam per unit length of axis, and k is the

foundation parameter.

THE PROPAGATION OF FREE WAVES
Before discussing the solution of equ. (1), we study first the

propagation of free waves in the infinite beam; results needed later.
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For this purpose we substitute the wave type expression

w(x, t)

w_ sin [g% (x—ct)] (2)

into equ. (1) with P = 0, and obtain

[(—2—1{>4 - %f (2_;\1)2 - %i- (—g-n)-\-)z ¢+ :I w_sin \:— (X-ct)]

Above equation is satisfied for any t and x when the term in the first

bracket is zero, hence when

° =«/ - <2n\2 = k»/ (2” @
Thus, expression (2) is a solution of the homogeneous equ. (1) when ¢
satisfies equ. (3). It represents an infinite wave train with amplitude
W, wave length )\, and propagation velocity c.
When N = 0, equ. (3) reduces to the one obtained by J. Dorr [6].
The corresponding graph is shown schematically in Fig. 2. The value

is obtained from the condition [dc/d(2m/1)] =0, It is

c , -
min N=O N=0

easily found that it is located at
20 /K
&) - V& @

* [ 4kEI
c_. = [—== (5
mmIN=o m

and that

When ¢ = 0, equ. (3) reduces to
- 2m\? k
N EI( ) +—>7(£1
A
The graphical presentation of above equation is also shown in Fig. 2.
The minimum value of N is obtained from the condition [BN/&(ZH/X)]C=O = 0,

It is found to take place for

SRS
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and that

Non| =2 / KEL' = N__ )

c=0
the critical buckling load of the infinite beam [7].
Comparing (4) and (6), it follows that both minima are located at
the same value of (2m/)). It may be easily shown that for any fixed
N S Ncr the corresponding € in is located at the (2m/))-value given in

(4) or (6) and that the corresponding € ohin is

—
cmin - ’, 4kEL (8)

The above results suggest the rewriting of equ. (3) in the following

Bl=

non-dimensional form:

[T}

cminl cr
N=0
where
_22m *fk
Y= 7N W E 10)

The graphical presentation of equ., (9) is shown in Fig, 35

It should be noted that, for each N ES Ncr’ the propagation velocity c¢
depends also upon the wave length ) and that the wave trains of the type (2) do
exist only for ¢ z € in® When ﬁhe wave length ) - 0 or A - «, the corre-
sponding ¢ —» », From Fig. 3 it may also be seen that for a fixed N S Ncr’
to each ¢ > Cin there always correspond two waves with different wave
length ). That is, for a fixed Nk< Ncr’ two waves, each with a different
wave length X, may propagate with the same velocity.

To the propagation velocity cmin there corresponds only one wave (2)

with the wave length given in (4). An important feature of the results

presented above is, that Cmin decreases with increasing N, (i.,e., with
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increasing compression force) and that € oin becomes zero at Ncr' With

decreasing N, (i.e., with increasing tension force), Cin increases,
From equ. (8) it follows that for any N > Ncr the propagation

velocity Chin is a complex number. This is also the case for an

N < Ncr and any c value beyond the ¢ = 0 curve shown in Fig. 2 and

Fig. 3.

BEAM SUBJECTED TO A MOVING LOAD. P

We consider now the response of a beam when it is subjected to a
load P that moves at a constant velocity v, as shown in Fig. 1. The
differential equation which describes the beam response is given in (1).
Because of the infinite extent of the beam and base, and its constant
properties, as well as because of the assumption that v, = const., it
appears reasonable to assume that after a time period the tramsient
motions will become negligibly small and that the beam displacements
will approach a steady state [4]. Thus, from the point of view of an
observer which moves with the load, the deflections of the beam will
appear static. This observation, suggests the possibility, often
utilized before, of transforming the partial differential equation (1)
into an ordinary differential equation in the moving reference frame
(€,n.,C) as shown in Fig. 1. With the new coordinates

E=x-vit s n=y 5 =z (11)

differential equation (1) becomes

EI —%}" + (N-imvcz‘) -32—3’- + kw = P8 () 12)

Because of the steady state assumption, the load P moves at a

constant altitude and hence does not experience an acceleration in the



z-direction. Thus, P in equ. (12) represents only the static intensity
of the load. Note that equ. (12) is identical to the equation of a beam
which rests on a Winkler base, is compressed by an axial force (N+mvof),
and is subjected to a lateral load P at £ = 0.

The simplest method of solving equ. (12) is to set the right hand
side equal to zero and to incorporate the concentrated load P through

the matching conditions at £ = 0, Setting

N + mvo? . Kk
4P == 48 T (13)
equ. (12) becomes
4
g—g{-’+4a?%2§-§’+4a4w=o (14)

Assuming w = A.esg and substituting it into equ. (14), we obtain
s* +40°s® +4p* =0 (15)

The four roots of above equation are

T T4l
81 ,2:314 =+ ,\Y/iz (az ¥ \/a4 - 64) (16)

Noting that o*-p* = (0°-g°)(0°+f ), we have to distinguish three cases:

[P |

[ 4kETI _ N
== - (17)

< g2 . <
= h espond o v =
o 3 B which corresp s t 0

Note that the velocities v_ are real, only when

N< 2 [/ kEI = Ncr (18)

It is well known that, when N > Ncr’ the stable beam shape is not
straight and hence differential equation (1) is not applicable. For this
case, the necessary analysis i#s very involved and is beyond the scope of
the present paper, '

In the following we analyze the case when N < Ncr’ in order to

determine the rail response when N approaches the buckling load Ncr; a



simpler problem of more immediate practical significance, for which equ. (1)
is applicable.

We consider the case when

v < [[H<EL _ XN
[o] m m

This corresponds to of < . The roots of equ. (10) are complex numbers,
namely
Sy .2 13 14 =x A + iw (19)

where

A= - s w= [ +0P (20)

The corresponding solution for the region ahead of the load P is

w, €) = e ™8 [A, cos @) + Az sin(E)] +

+ e-kg [A; cos(@E) + Ay sin(E)]] £ Zo0 (21)
and for the region behind the load
w €) = eTAE [Ag cos@E) + Ag sin@wE)] +
+ e A8 [A7 cos WE) + Ag sin(ug)] £ £ (22)

It is reasonable to expect that as £ - o, v, =0, and as £ - - «,

W = 0, Thus

A=Ay =0 ;3 Ay =Ag =0 23)

The remaining four constants are determined from the four conditions

at £ = 0
dwa dwb
v, (0) = w (o) & ) =Eg—-|o |
Pug 9 fﬁ’a-ffﬁ) _ B
ae” | o de” | ge® g / ~ EI

It should be noted that in the last boundary condition the term involving



(dwa/dg - dwfldg)o is missing, since according to the boundary condition

above it, this term vanishes at € = 0, The determined constants are

~ p
Ae = - bs = EL G HE)

(25)
Ay =+ Ag = E
= = T
3 5 4EIA O°+u°)
Substituting the constants into equations (21) and (22) we obtain,

noting that € = x - vot,

Pe-x(x4vot)
wa(x,t) = hEDw 02 RF) ¥ cos[iw (x-v,t)] + A sin[m(x-vot)]} (26)
for x z v t
0
Pe+-A_(x-vot)
wb(x,t) = AED ) W cosDn(x-vot)] - sin[w(x-vot)]} 27)

<
for x = v t
o

Hence, the wave caused by P, and which moves with P at a constant

velocity v, < JQ 4KEI/nf - N/m, is symmetrical with respect to P for

any N < Ncr’

It may be easily shown that when vy approaches the value

Jyh4kEI/n?'~ N/m: the deflections become infinite. Thus, the critical

velocity of the beam subjected to the axial compression force N is

Ver T W %%E ) E 28)

When N = 0, equ. (28) reduces to

4/ 4k
Vee| " = 29)
N=0

Noting (29) and (7), equation (28) may be rewritten in the following

form:
v 2
cY N
= 30
vcfg * Ncr ' et
N=0




or

v . = .l - N/Ncr Vcrl
C N=0

(31)

Hence when N - Ncr the critical speed Ve~ 0. When N is a tensile

force, v._> v . The graphical presentation of equ. (31) is shown
cr er| v

in Fig. 4.

Comparing equations (8) and (28) it follows that for any N < NCr

v ¢ . . Thus, for a fixed N < Ncr’ the corresponding Vor is the

cr min
lowest speed at which a free wave of the form (2) can propagate., Therefore,
Fig. 3 may also be used to visualize the effect of N upon Vo

To show the effect of N upon the traveling deflection profile,

equ. (26) was evaluated for v /(v ) = 0,2 and different values of

x|

N=0
N/Ncr' These results are shown in Fig. 5. It may be seen that as the
axial compression force N approaches the value (N/NC > shown in Fig. 4,
0.2

the amplitude increases rapidly and the wave length decreases, whereas an

increasing tensile force has an opposite effect.

CONCLUSION

It was found that Vor increases with an increasing tension force N,
whereas Ver decreases with an increasing compression force; V., @P"
proaching zero when N - Ncr‘ Hence, in the absence of expansion joints
in the rails, the critical velocity V., M3y be reduced, by a raise in
‘temperature, to within the operational velocities of trains.

In view of this finding it is expected that an'analysis, based on
a formulation which does include the inertia and damping of the base,

will also exhibit a similar effect of N upon Vor
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